Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis.

نویسندگان

  • S A Denome
  • P K Elf
  • T A Henderson
  • D E Nelson
  • K D Young
چکیده

The penicillin binding proteins (PBPs) synthesize and remodel peptidoglycan, the structural component of the bacterial cell wall. Much is known about the biochemistry of these proteins, but little is known about their biological roles. To better understand the contributions these proteins make to the physiology of Escherichia coli, we constructed 192 mutants from which eight PBP genes were deleted in every possible combination. The genes encoding PBPs 1a, 1b, 4, 5, 6, and 7, AmpC, and AmpH were cloned, and from each gene an internal coding sequence was removed and replaced with a kanamycin resistance cassette flanked by two res sites from plasmid RP4. Deletion of individual genes was accomplished by transferring each interrupted gene onto the chromosome of E. coli via lambda phage transduction and selecting for kanamycin-resistant recombinants. Afterwards, the kanamycin resistance cassette was removed from each mutant strain by supplying ParA resolvase in trans, yielding a strain in which a long segment of the original PBP gene was deleted and replaced by an 8-bp res site. These kanamycin-sensitive mutants were used as recipients in further rounds of replacement mutagenesis, resulting in a set of strains lacking from one to seven PBPs. In addition, the dacD gene was deleted from two septuple mutants, creating strains lacking eight genes. The only deletion combinations not produced were those lacking both PBPs 1a and 1b because such a combination is lethal. Surprisingly, all other deletion mutants were viable even though, at the extreme, 8 of the 12 known PBPs had been eliminated. Furthermore, when both PBPs 2 and 3 were inactivated by the beta-lactams mecillinam and aztreonam, respectively, several mutants did not lyse but continued to grow as enlarged spheres, so that one mutant synthesized osmotically resistant peptidoglycan when only 2 of 12 PBPs (PBPs 1b and 1c) remained active. These results have important implications for current models of peptidoglycan biosynthesis, for understanding the evolution of the bacterial sacculus, and for interpreting results derived by mutating unknown open reading frames in genome projects. In addition, members of the set of PBP mutants will provide excellent starting points for answering fundamental questions about other aspects of cell wall metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FtsZ collaborates with penicillin binding proteins to generate bacterial cell shape in Escherichia coli.

The mechanisms by which bacteria adopt and maintain individual shapes remain enigmatic. Outstanding questions include why cells are a certain size, length, and width; why they are uniform or irregular; and why some branch while others do not. Previously, we showed that Escherichia coli mutants lacking multiple penicillin binding proteins (PBPs) display extensive morphological diversity. Because...

متن کامل

Reconstruction of Escherichia coli mrcA (PBP 1a) mutants lacking multiple combinations of penicillin binding proteins.

Previously, we constructed a set of mutants from which eight penicillin binding protein (PBP) genes were deleted in 192 combinations from Escherichia coli (S. A. Denome, P. K. Elf, T. A. Henderson, D. E. Nelson, and K. D. Young, J. Bacteriol. 181:3981-3993, 1999). Although these mutants were constructed correctly as determined by restriction mapping and the absence of relevant protein products,...

متن کامل

Daughter cell separation by penicillin-binding proteins and peptidoglycan amidases in Escherichia coli.

As one of the final steps in the bacterial growth cycle, daughter cells must be released from one another by cutting the shared peptidoglycan wall that separates them. In Escherichia coli, this delicate operation is performed by several peptidoglycan hydrolases, consisting of multiple amidases, lytic transglycosylases, and endopeptidases. The interactions among these enzymes and the molecular m...

متن کامل

Cell sorting enriches Escherichia coli mutants that rely on peptidoglycan endopeptidases to suppress highly aberrant morphologies.

Bacterial morphology imparts physiological advantages to cells in different environments and, judging by the fidelity with which shape is passed to daughter cells, is a tightly regulated characteristic. Surprisingly, only in the past 10 to 15 years has significant headway been made in identifying the mechanisms by which cells create and maintain particular shapes. One reason for this is that th...

متن کامل

Susceptibility to antibiotics and beta-lactamase induction in murein hydrolase mutants of Escherichia coli.

The antibiotic susceptibilities and capabilities to induce beta-lactamases were studied in multiple Escherichia coli murein (peptidoglycan) hydrolase mutants. E. coli mutants lacking either three amidases, three amidases and one lytic transglycosylase, or six lytic transglycosylases showed higher levels of susceptibility to bacitracin, erythromycin, gallidermin, and vancomycin than the wild typ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 181 13  شماره 

صفحات  -

تاریخ انتشار 1999